• 관련 Fluke 회사:
  • Fluke
  • Fluke Biomedical
  • Fluke Networks
  • Fluke Process Instruments
Fluke의 더 많은 브랜드 보기
Accelix Amprobe Beha-Amprobe Comark Emaint Landauer Pacific Laser Systems Pomona RaySafe Schad
홈
Precision, Performance, Confidence.
플루크 캘리브레이션
  • 등록
  • 로그인
  • Contact Us

KR - Korean(한국어) [Change]

 

Get Quote

Ratio calibration—what’s the big deal?

 

By Chuck Newcombe

February 2012

Fluke 85 digit bench multimeters

Because of my background in precision calibration years ago in the aerospace industry, I still keep tabs on what the Fluke Calibration Group is up to. As a result, I recently received notice that there was a webinar available on the use of the Fluke 8508A Reference Multimeter to perform ratio calibrations. I promptly watched this excellent presentation in its entirety.

In this hour-long presentation, Jack Somppi demonstrates how to perform a precision ratio comparison of two Fluke voltage standards with a near-10:1 ratio of their voltage outputs using only the 8508. He also describes how to perform the same test using the instrumentation I would have used in 1966—the Fluke 720A Kelvin-Varley divider.

The importance of ratio measurements in metrology

Ratios lend themselves to precision applications through the physical nature of many ratio comparison techniques, which have very defined measurement methods with small errors. Historically, ratio measurements have been critical in comparing an unknown to a known similar standard. By measuring ratios, the operator is able to remove other systematic errors from the measurement equation (gain errors, traceability errors, short and long term stability errors, etc.).

Let’s compare the classical tools for measuring ratios to the capabilities of modern digital tools.

More about the 720A

For those of you unfamiliar with the 720A, it is essentially a three-terminal potentiometer with 0.1 ppm (0.00001 %) resolution and linearity. A major feature of this divider is that it offers self-calibration capability through the use of an internal resistance bridge to compare the resistors used in the largest steps. This design allows for user adjustment so that they are matched in ratio.

The 720A can be used with up to 1,100 volts across the input, but the self-calibration process is performed at relatively low voltages. So, you might ask, how did Fluke verify its performance at such high voltages?

Bootstrap calibration

When I first came to Fluke, in 1966, engineers were in the process of testing the 720A prototypes to determine the product specifications that could be published, and they were pondering the same question.

As it happened, Andrew Dunn of the Canadian Research Council had presented an IEEE paper in 1964 entitled “Calibration of a Kelvin Varley Divider” (see sidebar). I had read and applied the bootstrap techniques he outlined during the following year to verify the performance of a unit in the lab where I then worked.

So, shortly after I arrived at Fluke, I found myself spending a few evenings in the engineering lab working with a lab technician to complete the needed tests on the 720A. These were independent tests that didn’t depend on the internal calibration system, and which could be performed at the 1,000-volt level to verify power coefficients.

To perform the procedure we needed very stable dc power supplies (with better than 0.1 mV stability at the 1,000-volt level for the period of a test) along with sensitive null detectors. We also required the quiet of a deserted lab to achieve the thermal stabilities we needed, hence the work at night.

Using Andrew Dunn’s techniques, we were able to verify the power coefficient effects on linearity and publish a specification that ensured a ± 2 ppm of input limit of uncertainty at the 1,000 volt and 1,100 volt input levels.

Other ratio techniques

Determining the ratios of voltages and resistances is at the heart of many precision standard instruments, such as the Fluke 752A Reference Divider. Here, the divider ratios are calibrated using an elegantly simple process described by B. V. Hamon in 1954.

Instructions for the construction of an experimenter’s version of a 10:1 and 100:1 divider using Hamon’s methods may be found here: An Easy to Build 0.1X and 0.01X Resistive Divider

About the 8508 Reference Multimeter

The big deal about the 8508 is that it uses a state-of-the-art, high resolution, analog to digital conversion process based on pulse width modulation techniques to achieve measurement linearities to hundredths of a ppm. Tedious linearity calibration steps such as those used to linearize a Kelvin-Varley divider are no longer required.

Today, the 8508 can be the ultimate reference for calibrating many of your test tools. And, when the Rear Input terminal option is added, ratio techniques can be used to enhance basic accuracy for voltage and resistance measurements, as was pointed out in the webinar mentioned above. (For more information, read “Migrating from dc voltage dividers to modern reference multimeters”)

When a known standard is connected to the rear input terminals of the 8508 as a reference, the very linear a/d converter of the meter can determine the ratio of a measured unknown to that standard in a very straightforward way.

I was pleased to find out that the accuracy of the process using the 8508 very nearly equaled the performance of the much more complicated manual procedure using the 720A, and it took far less time to set up.

It’s clear that Fluke has come a long way in digital multimeters from an excellent start with the model 8300A Digital Multimeter introduced in 1969.

 

Andrew Dunn paper on bootstrap calibration of a K-V Divider

Calibration of a Kelvin-Varley Voltage Divider
Dunn, Andrew. F.
This paper appears in: Instrumentation and Measurement, IEEE Transactions on
Publication Date: 1964
Volume: 13 , Issue: 2
On page(s): 129 - 139
ISSN: 0018-9456

Abstract:
Earlier descriptions of methods for providing corrections to be applied to a Kelvin-Varley voltage divider can be misconstrued, particularly as the reasons for applying the corrections in the manner outlined are not obvious. The new method removes any ambiguity and presents the theoretical reasons leading to the procedure which may be carried as far as is justified by the instrument. The magnitude of the terms being neglected may be estimated at any stage, to serve as a guide to the reliability of the corrected data. Techniques of calibrating a divider, which do not require internal connections to the instrument, are also presented.

  • 홈
  • 제품
    • 신제품
    • 전기 교정
      • 전기 표준기
      • 전기 교정기
      • 벤치형 멀티미터
      • 전기 교정 소프트웨어
    • RF 교정
      • RF 레퍼런스 소스
      • RF 교정 액세서리
      • RF 교정 소프트웨어
    • 데이터 수집 및 테스트 장비
      • 벤치 멀티미터
      • 데이터 수집
      • 데이터 수집 소프트웨어
    • 온도 교정
      • ITS-90 온도 표준
        • ITS-90 고정점 셀
        • 표준 백금 저항 온도계(SPRT)
        • 유지장치
        • 액화 질소 비교 교정기
        • 저항 브리지
        • 표준 저항기
      • 교정 항온조
        • 소형 교정 항온조
        • 표준 교정 항온조
        • 특수 응용 항온조
        • 교정 항온조 액세서리
        • 교정 항온조 교정기
        • 교정 항온조 매질
      • 산업 온도 교정기
        • 현장용 계측 웰
        • 계측 웰
        • 휴대용 드라이 웰 교정기
        • 현장 드라이 블록 교정기
        • 마이크로 항온조
        • 적외선 교정기
        • 열전대 전기로
        • 이중 블록 드라이 웰
        • 영점 드라이-웰
      • 프로브/센서
        • 백금 저항 온도계(PRT)
        • 서미스터
        • 열전대
      • 디지털 온도계 리드아웃
      • 다기능 교정기
      • 온도 교정 소프트웨어
    • 습도 교정
      • 습도 발생기
      • 습도 데이터 로거 및 모니터
    • 압력 교정
      • 피스톤게이지
        • NMI 피스톤 게이지
        • 절대압 피스톤 게이지
        • 고압 압축 공기 피스톤 게이지
        • 유압 피스톤 게이지
        • 피스톤 게이지 엑세서리
      • 압력 컨트롤러/교정기
        • 저압력 제어기/ 교정기
        • 공기압식 압력 제어기/교정기
        • 고압의 공압 제어기/교정기
        • 유압 제어기/교정기
      • 압력 모니터
        • 저압력 모니터
        • 디지털 압력 게이지
        • 레퍼런스 압력 모니터
      • 분동식 압력계
        • 공압 분동식 테스트기
        • 유압 분동식 테스터기
        • 수압 분동식 테스터기
        • 고압력 유압 분동식 테스트기
        • 분동식 압력 테스터기 액세서리
      • 수동 압력 교정기 및 모니터
        • 압력 교정기
        • 공압식 압력 제어기
        • 유압 압력 비교 측정기/펌프
      • Handheld Pressure Calibrators
      • 대기 데이터 교정
      • 환경 모니터링
      • 압력 교정 액세서리
      • 압력 교정 커스텀 시스템
      • 압력 교정 소프트웨어
    • 유량 교정
      • 기체 유량 표준기
      • 기체 유량 액세서리
      • GFS 일차 표준 유량 표준기
      • 유량 교정 소프트웨어
    • 프로세스 교정 장비
      • 온도 교정기
        • 휴대용 온도 교정기
        • 드라이 블록 교정기 및 초소형 항온조
        • 정밀 디지털 온도계
        • 온도 프로브
        • 적외선 교정기
        • 데이터 로깅 기능이 있는 온습도계
      • 압력 교정기
        • 디지털 압력 교정기
        • 휴대용 압력 교정기
        • 분동식 압력계
        • 정밀 디지털 압력 게이지
        • 교정 핸드 펌프
      • 다기능 교정기
      • mA 루프 교정기
      • 프로세스 교정 소프트웨어
    • 교정 소프트웨어
      • MET/CAL® 소프트웨어
      • MET/CAL® 지원
      • 자산 관리 소프트웨어
      • 온도 교정 소프트웨어
      • 압력 교정 소프트웨어
      • 유량 교정 소프트웨어
      • 범용 교정 소프트웨어
    • 서비스 및 지원
    • 모든 교정 기기
  • 구입처 안내
    • 구입처
    • 견적 요청
    • 데모 요청
    • 구입 상담 요청
    • Certified Pre-Owned Equipment
    • General Services Administration (GSA)
    • Financing Program
    • National Stock Numbers (NSNs)
    • Payment Options and Tax Info
  • 뉴스
    • 보도 자료
    • 프로모션
    • Metrology Salary Survey
  • 교육 및 세미나
    • 컨퍼런스 및 전시회
    • 교육 과정
    • User Group Meetings
    • 웹세미나
      • 실시간 세미나
      • 보관된 세미나
  • 사용자 가이드
    • Education Hub
    • About Calibration
    • 문서 및 교육
    • 제품 자료
    • 제품 매뉴얼(사용자 가이드)
    • 동영상 및 가상 데모
    • Blog
  • 서비스 및 지원
    • Service Request (RMA)
    • Service Plans
    • 기술 자료
    • 제품 인증
    • Calibration Certificates
    • 교정 커뮤니티 사이트
    • My MET/SUPPORT
      • Activate
      • Procedures
      • Software
      • Technical Bulletins
      • Priority Support
      • Manuals
    • 제품 매뉴얼(사용자 가이드)
    • 안전 보건 자료(SDS)
    • Safety, Service, and Product Notices
    • 소프트웨어 다운로드
  • 회사 정보
    • 연락처
    • 회사 위치
    • Fluke Calibration
      • Hart Scientific 온도 교정
      • DHI 압력 및 유량 교정
      • Pressurements 압력 교정
      • Ruska 압력 교정
    • 채용 정보
    • 자회사 안내
    • 도덕성 및 규정 준수
    • FAQ
홈|자료|보도 자료|Ratio calibration—what’s the big deal?

©1995-2022 Fluke Corporation
             

Secondary menu

  • Disclaimer
  • 개인정보 취급방침
  • 이용약관
  • 판매 약관